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A B S T R A C T

Freeze-thaw cycles are important processes relevant to terrestrial hydrological cycling. However, the re-
presentation of freeze-thaw cycles has been often simplified in large scale watershed models. The Soil and Water
Assessment Tool (SWAT), which has been widely used to understand and assess hydrologic budgets and water
resources management, employs a simplified empirical approach to estimate soil temperature and determine the
freezing and thawing status of soils. Here, we compared the performance of a physically-based soil temperature
module and the built-in empirical approach in SWAT against field measurements at surface and 5, 10, 20, 50,
and 100 cm depths at six stations of the U.S. Climate Reference Network (USCRN) within the Upper Mississippi
River Basin (UMRB). In general, SWAT consistently underestimated winter soil temperatures and overestimated
frozen days at all soil depths, while the modified version of SWAT (equipped with the physically-based soil
temperature model; referred to as TSWAT) pronouncedly reduced the bias in estimated winter soil temperatures
and frozen days compared with SWAT. Model performance assessment is conducted with three statistical
coefficients, i.e., Bias (°C), the coefficient of determination (R2), and Nash-Sutcliffe coefficient (NS). Statistical
analyses show that TSWAT accurately simulated surface and soil temperatures at the five depths with R2 and NS
values greater than 0.82 at most sites, and Bias values were generally within the range of −1 to 1 °C during
winter and ranged between −2.09 and 2.58 °C in non-winter seasons. The differences in freeze-thaw cycle
representation between SWAT and TSWAT translate into noticeable discrepancies in simulated key hydrologic
variables, such as surface runoff, percolation, and baseflow. Compared against long-term observed streamflow
(1980–2015), TSWAT outperformed SWAT in capturing variations in monthly streamflow in both winter and
non-winter seasons. These results and analyses highlight the value of improving freeze-thaw cycle representation
for enhanced hydrologic modeling in large watersheds that are subject to freeze-thaw cycles.

1. Introduction

About 35% of the Earth’s surface is subject to freeze-thaw cycles
that have great hydrological and biogeochemical importance with re-
spect to water security and climate change impacts (Li and Fang, 2016;
Solomon, 2007; Williams and Smith, 1991). The presence of frozen soil
layers significantly influences surface and subsurface exchanges of
water and energy in the cold regions through hydrological and thermal
processes (Ouyang et al., 2016; Wang et al., 2009; Woo et al., 2004).
Freezing of soils reduces the hydraulic conductivity and results in more
surface runoff due to decreased infiltration because of restricted drai-
nage (Shanley and Chalmers, 1999; Slater et al., 1998). Phase changes
of soil water are associated with latent heat absorption and release

which have direct influences on the thermal regime of soils
(Riseborough, 1990). Meanwhile, thermal gradients have considerable
impacts on soil moisture migration (Cary, 1966). Energy exchange is
particularly important in cold regions where freeze-thaw cycles have a
critical influence on water infiltration and solute movement (Hayashi
et al., 2003).

The coexistence of liquid water and ice in soils dramatically changes
the thermal and hydraulic characteristics of the soil (Zhao et al., 1997).
Ice content in soil layers directly controls infiltration and soil moisture
movement (Cherkauer and Lettenmaier, 1999). Liquid water flow was
unhindered at relative low ice content, while liquid water movement is
restricted as the soil ice content increases (Harlan, 1973). In addition,
the dynamics of soil heat fluxes are also depending on soil ice content
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which determines the soil thermal properties (e.g., thermal con-
ductivity and volumetric heat capacity) (Slater et al., 1998). The frozen
depth in the soil profile is driven by the diurnal cycle of the soil surface
temperature (Cherkauer and Lettenmaier, 1999). In general, the
freezing front advances as the net heat flux out of the ground is positive,
and a thawing front may form at the surface and advance into the soil as
the net heat flux is negative (Cheng et al., 2014). The presence of snow
cover further complicates the problem through its insulation effects
which dampens daily heat fluxes and decreases frozen depth and timing
(Groffman et al., 2001; Zhang, 2005). For example, an early snow that
remains throughout the winter will result in shallower frozen depths
than a late snow that falls after many days of cold weather (Iwata et al.,
2011). Accurate simulation of the timing and depth of freeze-thaw
boundary in hydrological models will significantly improve their ability
to model the hydrologic processes in cold region (Luo et al., 2003; Woo
et al., 2004). The inadequate representation of such freeze-thaw pro-
cesses in most hydrology models is a crucial source of uncertainty in
many hydrologic modeling studies. (Wellen et al., 2015; Zheng et al.,
2018).

As a large-scale hydrological model, the Soil and Water Assessment
Tool (SWAT) is designed to simulate hydrological processes and predict
water quantity and quality as affected by landuse, management prac-
tices, and climate change at a watershed scale (Arnold et al., 1998). The
SWAT model has been used worldwide to solve complex watershed
management problems and modified for different study purposes
(Gassman et al., 2007; Li et al., 2014; Qi et al., 2018a, 2017; Zhang
et al., 2017). In SWAT, a watershed is partitioned into a number of
subbasins, which are further discretized into hydrological response
units (HRUs) based on specific combinations of landuse, soils, and
slopes. The model calculates the water balance (i.e., surface and sub-
surface runoff, percolation and base flow, and evapotranspiration and
transmission losses), crop growth, nutrient cycling, and pesticide
movement at the HRU scale (Fontaine et al., 2002). Water flow, sedi-
ment, and nutrient loadings from each HRU in a subbasin are summed
and the resulting loadings are then routed through channels, ponds, and
reservoirs to the watershed outlet. In SWAT, soil temperature Tsoil is
calculated at the center of a soil layer (z) on the HRU scale by Neitsch
et al. (2011),

= + − − +T z γ T z γ d T T T( ) · ( ) (1 )·[ ·( ¯ ) ]soil soil Aair sur sur
' (1)

where γ is the lag coefficient that relates current day’s temperature to
that of the previous day, T′soil is the soil temperature at a depth z on the
previous day, d quantifies the influence of depth on soil temperature,
T̄Aair is the average annual air temperature, and Tsur is the temperature
at soil surface. The depth factor d is a function of depth at the center of
the soil layer (z), maximum damping depth, bulk density, and soil
water. The soil surface temperature Tsur is determined by the previous
day’s temperature, the amount of ground cover, and the bare soil
temperature which is a function of daily average, minimum, and
maximum temperature as well as solar radiation reaching the ground
and albedo. This empirical equation, in general, can reflect several
features of temperature variation in soils: the annual soil temperature
variation follows a sinusoidal function; the amplitude of the sine wave
decreases with soil depth until temperature remains constant
throughout the year at a certain depth; the timing of maximum and
minimum temperatures varies with depth.

This empirical formulation works well in warm temperate regions.
However, in cold regions with snow accumulation, predictions of soil
temperature seldom agree with field measurements. For example,
Bélanger (2009) pointed out, although the empirical formulation was
able to simulate seasonal trends in soil temperature in the Canadian
Boreal Plains, the formulation tended to underestimate soil temperature
during winter, even with an adjusted lag coefficient. Snow has high
surface albedo and emissivity and low thermal conductivity which can
protect the ground from excessive heat loss in winter (Zhang, 2005).

Although such effects have been partially accounted for in the SWAT
model through the incorporation of correction factors (Neitsch et al.,
2011), this does not fully address the physical processes driving soil
temperature changes and, as a result, may not attend to the complex-
ities associated with the presence of snow cover in winter (Bélanger,
2009). In addition, this empirical formulation does not simulate freeze-
thaw cycles because phase changes of water are not considered in
SWAT. As a result, hydrological processes influenced by freeze-thaw
cycles cannot be accurately modeled at cold regions.

To overcome this problem, a physically-based soil temperature
module has been developed in SWAT to consider the insulation effects
of snow and latent heat exchange through phase changes of water in
soils (Qi et al., 2016a,b). Instead of considering soil temperature as a
function of air temperature, the new soil temperature module simulates
temperature change in snow and soils as a result of heat conduction and
latent heat exchange. Compared with the empirical soil temperature
module, the new module can estimate snow or soil surface temperature
based on an energy balance, update thermal properties of snow and
soils according to changes in snow density and soil water/ice content,
and simulate phase changes of water in the soil profile. The physically-
based module was tested with field observed temperatures from a small
experimental watershed in Atlantic Canada (Qi et al., 2016b), demon-
strating an improvement in modeling soil temperatures. In the present
study, we intend to achieve two objectives: (1) apply the modified
version of SWAT (hereafter TSWAT) to a large-scale watershed, i.e., the
Upper Mississippi River Basin (UMRB), to evaluate its capability of si-
mulating freeze-thaw cycles across multiple sites; (2) compare TSWAT
with the original SWAT model in simulating streamflow to understand
the role of enhanced freeze-thaw cycle representation in a large scale
watershed modeling.

2. Materials and methods

2.1. Study area

The UMRB extends from the source of the Mississippi River at Lake
Itasca in northern Minnesota to a point just north of Cairo, Illinois with
a total drainage area of 492,000 km2 (Fig. 1) (Arnold et al., 2000). It
constitutes a minor portion (15 percent) of the Mississippi River Basin
system. Land cover in the basin includes agricultural lands, forest,
wetlands, lakes, prairies, and urban areas. Nearly 69% of total land is
used for agriculture and pasture with corn, soybeans, and alfalfa as the
major crops in the basin (Wu and Tanaka, 2005). The UMRB con-
tributes more than 50 percent of nitrogen transported to the Gulf of
Mexico (Wu and Tanaka, 2005; Yuan et al., 2013) due to its intensive
agricultural activities, landscape management, and widespread use of
chemical fertilizers (Jha et al., 2004). The climate of the UMRB is sub-
humid continental with about 75% of the annual precipitation falls
during corn growing season from April to October (Wu and Tanaka,
2005). Soil types in the basin range from heavy, poorly drained clay soil
to light, well-drained sands.

2.2. Data collection

The SWAT model requires daily values of precipitation, max/min air
temperature, solar radiation, relative humidity, and wind speed as
forcing data. In the present study, we employed daily precipitation,
max/min air temperature, solar radiation, relative humidity, and wind
speed derived from the NASA North-American Land Data Assimilation
System phase 2 (NLDAS; ldas.gsfc.nasa.gov/nldas/). NLDAS climate
forcing data from 1979 to 2015 has assimilated multiple sources of
climate observations and is widely recognized as a high resolution
(∼1/8°), spatially continuous, and comprehensive dataset that is va-
luable for water cycling studies (Xia et al., 2012). The spatial domain,
spatial resolution, computational grid, terrain height, and land mask of
NLDAS2 are identical to that in NLDAS1, which is described in Mitchell
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et al. (2004).
Daily soil temperature records were derived from the U.S. Climate

Reference Network (USCRN). USCRN is a systematic and sustained
network of climate monitoring stations with sites across the con-
terminous U.S., Alaska, and Hawaii. In total, there are six USCRN sta-
tions evenly distributed in the UMRB (Fig. 1). USCRN stations are
equipped with three soil probes measuring temperature and moisture at
5, 10, 20, 50, and 100 cm depths. In addition, each station measures
ground surface temperature. USCRN stations are managed and main-
tained by the National Oceanic and Atmospheric Administration's
(NOAA) National Centers for Environmental Information. The USCRN's
primary goal is to provide long-term temperature, precipitation, and
soil moisture and temperature observations that are of high quality and
are taken in stable settings. The USCRN provides the United States with
a reference network that meets the requirements of the Global Climate
Observing System (GCOS). Monthly streamflow data were obtained for
U.S. Geological Survey (USGS) gauge station # 05587450 (Grafton,
Illinois) for the period of 1980–2015 (https://www.sciencebase.gov/
catalog/item/5af49c2ae4b0da30c1b44e2b; Fig. 1).

2.3. Physically-based soil temperature module in SWAT

A physically-based soil temperature module has been developed and
implemented in SWAT at the HRU scale based on heat transfer theory
(Qi et al., 2016b),

∂
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where T is the temperature (°C), t represents the time step (in days), k is
the thermal conductivity (J cm−1 d−1 °C−1), C is the volumetric heat
capacity (J cm−3 °C−1), x is the vertical distance from the air-soil or air-
snow interface (cm), and s is the latent heat source/sink term (J cm−3

d−1). The calculated temperature was assumed to be uniform within

individual layers as were the heat capacity and thermal conductivity
which were functions of soil physical properties. The simulation do-
main was defined as extending from the air-soil or air-snow interface
(upper boundary) to the damping depth (lower boundary), where the
impact of air temperature diminishes (Fig. 2). When snow accumulated
on the ground, the snow cover was treated as a single layer (Fig. 2).

2.3.1. Boundary conditions
The upper boundary temperature was determined by the energy

balance equation (Hillel, 1980),

+ + + + =R R LE H S 0sn ln (3)

where Rsn is the net solar radiation, Rln is the net longwave radiation, LE
is the latent heat flux, H is the sensible heat flux, and S is the ground
conductive heat transfer. All energy terms in Eq. (3) have the same unit:
J cm−2 d−1. Latent and sensible heat were determined as in Meng et al.
(1995) and Yin and Arp (1993),

+ = −LE H h T T·( )e a 0 (4)

where Ta is the air temperature (°C), T0 is the surface temperature (°C),
and he is the effective surface heat transfer coefficient (J cm−1 d−2

°C−1). he is defined as a lumping coefficient that characterized the air-
surface heat transfer rate and the heat transfer rate associated with the
shading and insulative properties of the overlying vegetation and re-
sidue. The ground conductive heat flux was defined as,

= −S k
x

T T
0.5·

·( )1

1
0 1 (5)

where k1 is the thermal conductivity of the top layer (J cm−1 d−1

°C−1), x1 is the thickness of the top layer (cm), T1 is the temperature at
the center of the top layer (°C). In the absence of snow cover, the first
soil layer was referred to the top layer.

Based on Eqs. (3)–(5), the surface temperature was determined by,

Fig. 1. Locations of Upper Mississippi River Basin (UMRB), six U.S. Climate Reference Network (USCRN) stations, and U.S. Geological Survey (USGS) gauge station #
05587450 within the basin.
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where parameter βe = k x
h

/ ( / 2)
e

1 1 , which is the effective air-to-ground
conductance ratio (dimensionless), which denotes the relative rate be-
tween surface-soil heat transfer and air-surface heat transfer. Low βe
indicates that the rate of heat conductance into the soil profile through
the top layer is low (k1 approaches 0), or the rate of air-to-surface heat

exchange is high (greater he values). With greater he values, the surface
temperature tends to quickly equilibrate to air temperature (i.e., T0
converges to Ta). Parameter βe was calibrated with an empirical equa-
tion (Eq. (7)) developed by Yin and Arp (1993).

= − −( )β eff R e· · 1e coe sn
V Vmin( , ) 6.8c v (7)

We found that βe closely correlates with net solar radiation Rsn and
vegetative area indexes (Vc and Vv). Parameter effcoe is a coefficient to
calibrate βe, and the default value of effcoe is 8.1 according to Yin and
Arp (1993) for forest lands. For agricultural lands, effcoe is close to 50
according to previous studies (Qi et al., 2016a,b).

The amount of net solar radiation and net longwave radiation was
calculated using the algorithms in SWAT (Neitsch et al., 2011). The
lower boundary of the simulation domain was defined at the damping
depth determined by SWAT. Soil temperature Tz (°C) at this depth was
determined following the method in Steppuhn (1981).

2.3.2. Soil and snow thermal properties
Johansen (1975) developed a method to determine soil thermal

conductivity for unfrozen and frozen soils. The thermal conductivity of
unsaturated soils (k) was determined by its thermal conductivities in
dry (kdry) and saturated (ksat) states, by introducing a Kersten number,
i.e., Ke. The Ke was determined by the degree of saturation, which was
calculated from the amount of water or ice in the soil. For saturated
soils, a geometric mean equation based on the thermal conductivities of
the components and their respective volumetric fractions was used in
the calculation of thermal conductivity. Parameter kcoe was used to

Fig. 2. Schematic flowchart of heat conduction in
snow and soil layers. The freeze-thaw processes with
latent heat release and absorption are also illu-
strated. Rsn is the net solar radiation, Rln is the net
longwave radiation, LE is the latent heat flux, H is
the sensible heat flux, Tn is the temperature for nth
node (N0 and Nb are the surface and bottom nodes;
Ns is the node at the center of the snow layer; N1 to
Nn are nodes centered at each soil layer), and ic and
wc are ice and water content in each soil layer.
Green arrows indicate heat transfer processes and
red arrows indicate mass transfer processes. (For
interpretation of the references to color in this figure
legend, the reader is referred to the web version of
this article.)

Table 1
Location of identified six USCRN stations in the UMRB and their soil types and data ranges used in SWAT simulation.

Site name Station no. Lon. Lat. Soil texture Data used

Audubon Center of the North Woods 54,932 (MN) −93.29 41.56 Silt Loam 2011–2015
Necedah National Wildlife Refuge 54,903 (WI) −88.37 40.05 Silt Loam 2009–2015
Northern Illinois Agronomy Research Center 54,811 (IL) −88.85 41.84 Silt Loam 2009–2015
Neal Smith National Wildlife Refuge 54,902 (IA) −92.99 46.11 Clay Loam 2009–2015
White River Trace Conservation Area 23,909 (MO) −91.72 37.63 Silt Loam 2009–2015
Bondville Environmental & Atmospheric Research Station 54,808 (IL) −90.17 44.06 Loamy Sands 2009–2015

Table 2
Calibrated parameter values for the soil temperature module for the six USCRN
stations.

Station Parameter Used value Station Parameter Used value

MN54932 effcoe 64.03 WI54903 effcoe 68.45
kcoe 17.36 kcoe 8.96
ks_coe 3.92 ks_coe 4.99
ccoe 14.12 ccoe 17.81

IL54811 effcoe 29.48 IA54902 effcoe 51.15
kcoe 7.87 kcoe 7.53
ks_coe 8.00 ks_coe 11.00
ccoe 9.36 ccoe 13.76

MO23909 effcoe 60.88 IL54808 effcoe 58.10
kcoe 18.25 kcoe 8.23
ks_coe 14.03 ks_coe 17.08
ccoe 5.73 ccoe 13.64

Note: kcoe and ks_coe is used to calibrate soil and snow thermal conductivities; ccoe
is used to calibrated heat capacity of soil layers; effcoe is the effective air-to-
ground conductance ratio.
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calibrate soil thermal conductivities,

= − +k k k k K k·[( )· ]coe sat dry e dry (8)

The volumetric heat capacity of soils (Csoil; J cm−3 °C−1) was cal-
culated as the volumetric weighted mean of the specific heat capacity of
soil constituents and calibrated by a parameter ccoe as a multiplier, i.e.,

= + + +C c C m C o C w C i·( · · · · )soil coe m c o c w c i c (9)

where Cm, Co, Cw, and Ci are volumetric heat capacity of soil minerals,
organic matter, water and ice (J cm−3 °C−1), and mc, oc, wc, and ic are
corresponding volumetric contents. The volumetric heat capacity of the
air in soil void space is negligible compared with other constituents.

Table 3
Statistical assessment of model performance for simulating daily surface and soil temperatures at different depths for the six USCRN stations during their periods of
record.

Note: Shaded numbers indicate SWAT has a lower absolute value of Bias or higher values of NS or R2 than the corresponding values for TSWAT.
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The thermal conductivity of snow was calculated as a function of
snow density according to Sturm et al. (1997). Snow density was lin-
early correlated to snow water equivalent SNO (Jonas et al., 2009). The
snow depth was a function of snow density and SNO. The SNO was
calculated with the snow module of SWAT. Parameter ks_coe calibrated
the thermal conductivity of the snow layer as a multiplier. The volu-
metric heat capacity of snow was calculated based on Verseghy (1991).

2.3.3. Latent heat exchange
The new soil-temperature module considered latent heat transfer

due to freeze-thaw cycles as an internal heat source or sink within in-
dividual soil layers (Fig. 2). Latent heat was calculated according to the
release of energy during the freezing of liquid water and the absorption
of energy during the melting of ice (Fig. 2). Each layer froze when its
temperature reached or fell below 0 °C and thawed when its tempera-
ture exceeded 0 °C (Fig. 2). Volumetric soil ice and water content were
updated at the daily time step based on the status of the soil with re-
spect to freezing or thawing (Fig. 2). Detailed information regarding
module development including above-mentioned functions and vari-
ables could be found in Qi et al. (2016b).

2.4. SWAT model setup and soil temperature calibration

The SWAT model requires a variety of detailed information

describing the land use, soil, and topography data of the UMRB. The
present study adopted a previously established UMRB SWAT project but
running with latest version of SWAT (ver. 664). In the previous study,
the UMRB was divided into 131 subbasins according to the eight-digit
United States Geological Survey (USGS) hydrologic unit codes (HUCs;
Fig. 1). National Hydrography Dataset (NHD) stream dataset and a 90m
digital elevation model (DEM) was used to provide watershed config-
uration and topographic parameter estimation. A land use map was
created by combing two sources of information, i.e., the Cropland Data
Layer (CDL) and 2001 National Land Cover Data to better define cul-
tivated and non-agricultural land use. The State Soil Geographic
(STATSGO) database 1:250,000 scale soil map was used for UMRB.
Using a threshold operation of 5% for land use, 10% for soil, and 5% for
slope, 14,568 HRUs were generated and the number of HRUs per sub-
basin ranged from 58 to 216. Management practices such as tile drai-
nage, tillage, crop rotation, and fertilizer and manure application were
included in the project according to various sources. Detailed model
setup information can be found in Srinivasan et al. (2010).

The six soil temperature monitoring stations were identified at the
corresponding HRUs in the UMRB using ArcGIS (Fig. 1). Corresponding
soil types and slope classes are shown in Table 1. The TSWAT model
was used to simulate soil temperatures at 5, 10, 20, 50, and 100 cm
depths in the six identified HRUs with Particle Swarm Optimization
(PSO) algorithm of SWAT-CUP to calibrate four relevant parameters

Fig. 3. Simulated vs. observed daily soil temperature at 5 cm depth for the six USCRN stations.
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(i.e., effcoe, kcoe, ks_coe, and ccoe). Specifically, the PAO algorithm was
applied to each site with hundreds of simulations by each iteration
(iteration and simulation numbers varies at different sites). In order to
simulate hydrology at the watershed scale, we applied the optimized
parameters of the six HRUs to other HRUs in the basin using the nearest
neighbor method via ArcGIS. The surface temperature records from the
six stations were used to validate the model.

2.5. Model evaluation

Model performance was assessed according to three coefficients of
accuracy, i.e., Bias (°C), the coefficient of determination (R2), and Nash-
Sutcliffe coefficient (NS) as described by Moriasi et al. (2007):

= −O PBias avg avg (10)
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where Oi and Pi are the observed and predicted values, Oavg and Pavg are
the average of the observed and predicted values. Model performance
on stream flow at the USGS gauge station # 05587450 was assessed by

R2, NS and percent bias, i.e.,

=
−

P
O P

O
100·

( )
bias

avg avg

avg (13)

3. Results and discussion

3.1. Soil temperature model calibration

Table 2 shows the calibrated parameter values for the physically-
based soil temperature module at the six USCRN stations. The values of
parameter effcoe (calibrating surface energy) ranged from 29.48 to
68.45 (with most values ranging from 51.15 to 68.45) and the values of
parameter kcoe (calibrating soil thermal conductivity) ranged from 7.53
to 18.25. These results are generally consistent with the values (i.e.,
effcoe=50 and kcoe=10) determined in previous studies conducted in
cold climates (Qi et al., 2016a,b). In the present study, we also cali-
brated the parameter ks_coe (for snow thermal conductivity) and ccoe (for
soil heat capacity) which were not calibrated in the previous studies
(i.e., default values= 1 was used for both parameters). The values of
parameter ks_coe ranged from 3.92 to 17.08 while the values of para-
meter ccoe ranged from 5.73 to 17.81. The reason for increased thermal
conductivity for soil layers in the previous studies and also in the pre-
sent studies is because SWAT tended to underestimate soil moisture
which has much higher thermal conductivity compared with void soil

Fig. 4. Simulated vs. observed daily soil temperature at 100 cm depth for the six USCRN stations.
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air space (Qi et al., 2018b). The larger-than-default values of ccoe can
partially compensate overestimated thermal conductivity due to un-
evenly distributed soil moisture in the entire soil profile. ks_coe was ca-
librated to better address snow insulation effects on soil temperature.

3.2. Model performance evaluation for soil temperature

Model performance of TSWAT on daily temperatures at surface and
five different soil depths in the six USCRN stations was evaluated based
on R2, NS, and Bias (Table 3). Model performance of the original ver-
sion of SWAT model (with the empirical soil temperature module) at
five soil depths were also illustrated in Table 3 (daily surface

temperature is not simulated by the original SWAT model). Simulated
and observed mean daily temperatures for periods of record for each
station (see Table 1) are also included. In general, TSWAT accurately
simulated surface and soil temperatures with higher accuracy for top
soil layers than for deeper soil layers. The R2 and NS values are greater
than 0.82 except for station WI54903 at 100 cm depth (Table 3). Based
on Bias values, TSWAT slightly overestimated surface and soil tem-
peratures at different soil depths except for stations WI54903 and
IL54811 (Table 3). All R2 values of TSWAT were greater than the cor-
responding values of SWAT at different soil depths for different stations.
Most NS values of TSWAT were also greater than those of SWAT except
for station IL54808 at soil depths of 5, 10, 20 cm (Table 3). The absolute
Bias values of TSWAT were generally less than the corresponding values
of SWAT for stations in the northern portion of the basin at different soil
depths (Table 3; Fig. 1). This indicates that the physically-based soil
temperature module outperformed the empirical soil temperature
module especially in areas with seasonal snow cover. On the other
hand, the empirical soil temperature model was able to capture the
average conditions of soil temperatures especially at top soil layers in a
temperate climate.

To illustrate the contrasting performance of TSWAT and SWAT for
top and deep soil layers, we show simulated vs. observed daily soil
temperature time series at 5 and 100 cm depths in Figs. 3 and 4, re-
spectively. TSWAT performed better than SWAT at describing the var-
iations of daily soil temperature in winter at the top soil layer and for
the whole year at the deepest soil layer. In fact, SWAT severely un-
derestimated winter soil temperatures at the top soil layers while
TSWAT was able to simulate winter soil temperatures more accurately
which was the precondition of simulating freeze-thaw cycles in winter.
At deeper soil layers, although SWAT could capture the general trend of
seasonal variations in soil temperature, it had large biases with respect

Table 4
Simulated vs. observed mean daily surface and soil temperatures (°C) at different depths and corresponding biases at the six USCRN stations for winter (Nov. to Apr.)
and non-winter seasons.

Note: Shaded numbers indicate SWAT has lower absolute values of Bias than the corresponding values of TSWAT.

Fig. 5. Total number of simulated vs. observed frozen days (temperature ≤0
°C) for surface and soil layers at different depths summarized over the six
USCRN stations during their periods of record (see Table 1) by two versions of
SWAT model.
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to summer temperature peaks (Fig. 4). The poorer performance for both
versions of SWAT at the 100 cm depth for station WI54903 may be
caused by uncertainties associated with soil physical properties at
deeper soil layers.

We also added analyses with respect to winter and non-winter
seasons to evaluate model performance based on Bias at the surface and
five different soil depths for the six USCRN stations as shown in Table 4.
For TSWAT, most Bias values (°C) were within the range of −1 to 1 °C
during winter for different stations. This is especially true for the sur-
face and top soil layers (i.e., soil depths< 100 cm; Table 4). Even for
soil layer at 100 cm depth, the Bias values were within the range of
−1.21 to 2.51 °C. For non-winter seasons, however, the TSWAT model
tended to have slightly greater absolute values of Bias. The maximum
Bias value was 3.16 °C at the surface of IL54808, while the minimum
value was −4.22 °C at 100 cm depth of WI54903. Except for these two
extremes, the Bias values ranged from −2.09 to 2.58 °C for other data
points (Table 4). The model tended to overestimate surface and soil
temperatures during non-winter seasons while this was not obvious
during winter (Table 4).

In most stations, absolute values of Bias for SWAT were greater than
the corresponding values of TSWAT, and the discrepancies between the
absolute values of Bias for SWAT and TSWAT were greatest at top soil
layers and then decreased with soil depth in winter (Table 4). Note that
the Bias values of soil temperature at 10 cm depth was −16.46 and
−0.36 °C for SWAT and TSWAT, respectively, in station MN54932
(with the highest latitude; Fig. 1) which demonstrated again that the

empirical soil temperature module severely underestimated winter soil
temperatures in top soil layers. On the contrary, absolute values of Bias
for SWAT were slightly less than the corresponding values of TSWAT at
top soil layers for most stations while TSWAT tended to have lower
absolute values of Bias at deeper soil layers in all stations in the non-
winter seasons (Table 4). These results explained the reason for lower
absolute values of Bias of SWAT than those of TSWAT in stations in the
southern portion of the basin on the annual temporal scale in Table 3.
As a result, the physically-based soil temperature model pronouncedly
improved winter soil temperature simulation which is the basis for
accurate simulate soil freeze-thaw cycles.

3.3. Model performance evaluation for estimated frozen days

To clarify small biases that may accumulate over time, we calcu-
lated the total number of frozen days (with temperature ≤ 0 °C) as
observed and simulated by SWAT and TSWAT for each soil layer over
all sites and their periods of record (Fig. 5). Note that the original SWAT
model does not simulate soil surface temperature. We used percent bias
(Pbias in %; Eq. (13)) to evaluate model performance. For TSWAT, the
highest accuracy was found at 5 cm depth with Pbias of −1% and the
lowest accuracy was at 100 cm depth with Pbias of 41%. For the surface
and other soil depths, Pbias ranged from −24 to 10%. In general, si-
mulated frozen days were less than observed for the surface and 100 cm
soil depth while more than observed for soil depths from 5 to 50 cm
(Fig. 5). For the original SWAT model, the highest accuracy was also

Fig. 6. Total number of simulated vs. observed frozen days (temperature ≤0 °C) for surface and soil layers at different depths for the six USCRN stations during their
periods of record (see Table 1) by the TSWAT model.
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found at 5 cm soil depth but with a much lower Pbias of −21% and the
lowest accuracy was at 50 cm depth with Pbias of −96%. Pbias values
ranged from −34 to −62% at other soil depths. In general, SWAT
pronouncedly overestimated frozen days than TSWAT mainly because
the empirical soil temperature module tended to underestimate soil
temperatures in winter. The physically-based soil temperature ap-
proach better matched observations due to its capability of better ac-
counting for snow insulation effects.

We further analyzed simulated vs. observed total frozen days at the

surface and different soil depths by TSWAT as shown in Fig. 6. Similar
to the results derived from soil temperature simulation as discussed in
Section 3.2, it is not surprising to find that TSWAT performed better for
capturing frozen days for top soil layers than for deep layers. For ex-
ample, for the four northern stations, Pbias ranged from −7 to 8%, from
−17 to 32%, from −22 to 45%, from −16 to 37%, and from −49 to
360% at the surface and 5, 10, 20, and 50 cm depths, respectively. Note
that, for the two southern stations, TSWAT generally performed poorer
than the four northern stations, particularly for the station MO23909.

Fig. 7. Simulated vs. observed soil profile temperature (temperature ≤0 °C) for the six USCRN stations by TSWAT. The color ramp on the right of each figure shows
the temperature represented in different colors, with bluish colors indicating frozen status and reddish colors indicating temperatures above 0 °C.
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The reason for the relatively poor performance at the southern stations
may be due to the rapid snow cover appearance and disappearance in
the southern climate which is difficult to accurately simulated by
TSWAT. The accuracy of the physically-based soil temperature is lar-
gely depended on surface conditions such as snow cover dynamics. In
the northern climate, the snow cover develops gradually over winter,
while in the south surface conditions are rather unstable which causes
difficulty in simulation of soil frozen status.

3.4. Model performance evaluation for frozen depth

We also evaluated TSWAT-simulated freeze-thaw cycles based on
observations of soil profile temperature and frozen depth. Fig. 7 com-
pares the simulated vertical soil temperature profile by TSWAT with the
observations at the six USCRN stations. The frozen depth in the simu-
lated and observed soil profile is indicated by light bluish colors
(temperature ≤0 °C) for different stations. The model reproduced the
daily variations in frozen depth well, except that the depth was un-
derestimated at WI54903 by approximately 20 cm and overestimated at
IL54811 and two southern stations by approximately 20–40 cm. In
general, the TSWAT model simulations captured well the seasonal
changes of frozen depths in the soil profile across the six stations
(Fig. 7).

3.5. Sensitivity of hydrological modeling to freeze-thaw cycle representation

We applied TSWAT to simulate monthly stream flow at USGS gauge
station # 05587450 (Fig. 1) from 1980 to 2015. Meanwhile, the ori-
ginal SWAT model was used for comparison. Note that neither version
of the SWAT model was calibrated for hydrology. The only difference
between these two versions of the SWAT model is that one used the
empirical soil temperature and another one used the calibrated new soil
temperature module. Model performance evaluation results on monthly

stream flow are summarized for annual, winter (Nov. to Apr.), and non-
winter seasons are shown in Table 5. Time series of observed and si-
mulated monthly stream flow by the two versions of SWAT model at

Table 5
Model performance on monthly stream flow by two versions of SWAT model in
the UMRB for different periods.

Period SWAT TSWAT

R2 NS Pbias (%) R2 NS Pbias (%)

Annual 0.71 0.54 21 0.81 0.68 18
Winter 0.67 0.45 14 0.86 0.70 16
Non-Winter 0.76 0.67 22 0.79 0.74 14

Fig. 8. Observed and simulated monthly stream flow at USGS gauge station # 05587450 for the two versions of SWAT model from 1980 to 2015.

Fig. 9. Observed vs. simulated monthly stream flow at USGS gauge station #
05587450 for the two versions of SWAT model in (a) winter and (b) non-winter
seasons from 1980 to 2015.
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USGS gauge station # 05587450 are shown in Fig. 8. Scatter plots of
observed vs. simulated monthly stream flow at the station for the two
versions of SWAT model in winter and non-winter are shown in Fig. 9.

All values of R2 and NS generated with TSWAT were greater than
the corresponding values generated with the original SWAT model and
most absolute values of Pbias of TSWAT were less than those of the
original SWAT model except for that in winter (Table 5). In general, the
variation of simulated stream flow was consistent with the observed for
the two versions of SWAT model (Fig. 8). Regression slope achieved by
TSWAT was closer to the 1:1 line in winter and non-winter periods than
the original SWAT model, and simulations by TSWAT had a stronger
association with observations than those by the original SWAT, espe-
cially during winter (Fig. 9a and b). As shown in Table 5, TSWAT
greatly improved stream flow simulation in winter (R2 increased by

0.19 and NS by 0.15) compared with the original SWAT model. For
non-winter seasons, TSWAT also slightly improved R2 by 0.03 and NS
by 0.07. We found that TSWAT exhibited slightly damped snowmelt
flow peaks compared with the original SWAT model, which is the major
reason for improved model performance in winter. TSWAT tended to
generate more infiltration and less surface runoff during winter and
snowmelt season on the watershed scale. The new soil temperature
module better accounted for snowpack insulation effects on soil tem-
perature allowing surface soil layers to remain unfrozen when snow
accumulating on the ground. Collectively, the enhanced SWAT model
improved its simulation of hydrological effects of freeze-thaw cycles,
particularly during winter and the snowmelt season.

To illustrate the impacts of different freeze-thaw cycle representa-
tion on hydrology, we compared simulated monthly average surface

Fig. 10. Simulated average monthly surface runoff, percolation, lateral flow, ground water discharge, total water yield, and soil water (mm) from 1980 to 2015 in the
UMRB by TSWAT and SWAT.

Table 6
Average annual surface runoff, percolation, lateral flow, ground water discharge, total water yield, and soil water (mm) from 1980 to 2015 in the UMRB simulated by
TSWAT and SWAT and the percent difference values.

Surface runoff (mm) Lateral flow (mm) Percolation (mm) Ground water (mm) Water yield (mm) Soil water (mm)

SWAT 120 11 95 94 233 186
TSWAT 97 13 122 118 243 179
Percent difference (%) −19 13 28 25 5 −4
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runoff, percolation, lateral flow, ground water discharge, total water
yield, and soil moisture in the UMRB from 1980 to 2015 as shown in
Fig. 10. Table 6 provides annual average statistical comparison by the
two versions of SWAT model. In Table 6, the relative difference be-
tween results of both models is evaluated by percent difference (%), i.e.,
(simulated by TSWAT – simulation by SWAT)/simulation by
SWAT×100. Compared with SWAT, TSWAT generated much more
percolation, lateral flow, and ground water discharge (percent differ-
ence= 28, 13, and 25%, respectively), less surface runoff and soil
moisture (percent difference=−19 and −4%) on the annual scale.
Total water yield was also increased by 5% based on the evaluation
period of 1980 to 2015 (Table 6). Fig. 10 evidently explained the dif-
ferences between simulations of SWAT and TSWAT on the monthly
scale. Because soil frozen days and depths simulated by TSWAT were
less than those of SWAT, more infiltration was generated and that water
was easily transported downwards from soil profile eventually be-
coming recharge (percolation from soil profile) to aquafers and lateral
flow during winter and the snowmelt season (Fig. 10b and c). TSWAT-
generated ground water during winter slowly discharged to streams as
base flow until summer months leading to prolonged differences be-
tween monthly ground water discharges of TSWAT and SWAT (see the
comparison from Jan. to Jul. in Fig. 10d). Apparently, the corre-
sponding surface runoff simulated by TSWAT was less than those of
SWAT during winter months (noticing that the dramatic difference in
surface runoff in March; Fig. 10a). Interestingly, SWAT produced more
total water yield than TSWAT from Dec. to Mar. (next year) while
TSWAT had more total water yield from Apr. to Jul. (Fig. 10e), which
can be explained by the differences between TSWAT and SWAT in terms
of surface runoff and ground water discharge in Fig. 10a and d. The
original SWAT model tended to retain a large amount of frozen water in
soils before soil thawing and resulted in overestimated soil water during
winter months, while TSWAT reduced soil water content during this
period leading to slight reduction in soil moisture (Fig. 10f) as indicated
in Table 6 on the annual scale (percent difference=−4% which is
close to the increase of total water yield of 5%).

4. Conclusion

In this study, we present the comparison between a physically-based
soil temperature module and an empirical soil temperature module for
simulating freeze-thaw cycles in the Upper Mississippi River Basin.
Daily surface and soil temperature records at 5, 10, 20, 50, and 100 cm
depths derived from six stations of the U.S. Climate Reference Network
in the UMRB were used to evaluate model performance. Further, long-
term streamflow data was used to understand the implications of im-
provements in freeze-thaw cycle representation for hydrological mod-
eling using the modified version of SWAT (equipped with the physi-
cally-based soil temperature model, i.e., TSWAT) and the original
version of SWAT (equipped with the original empirical soil temperature
model). Detailed analyses and statistical assessment demonstrate that
compared with the original SWAT model, TSWAT can reliably simulate
surface and soil temperatures and frozen depth and days at six sites
across the UMRB. The differences in freeze-thaw cycle representation
between SWAT and TSWAT translate into noticeable discrepancies in
simulated key hydrologic variables, such as surface runoff, lateral flow,
percolation, and ground water discharge. Compared against long-term
observed streamflow (1980–2015), TSWAT outperforms SWAT in cap-
turing variations in monthly streamflow in both winter and non-winter
seasons. These results and analyses demonstrate the importance of
improving freeze-thaw cycle representation for enhanced hydrologic
modeling in watersheds like the UMRB that are subject to freeze-thaw
cycles.
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